手机版 客户端

田刚:数学内外的奥秘

田刚:数学内外的奥秘

  多年来,每一次庞加莱猜想的突破都是数学界的大事情。1961年S. Smale 证明了庞加莱猜想的五维空间和五维以上的情形,立即引起轰动。斯梅尔由此获得1966年菲尔茨奖。

  1982年,M. Freedman 证明了四维空间中的庞加莱猜想,并因此获得1986年菲尔茨奖。很多人用拓扑学的方法研究三维庞加莱猜想没有进展,有人开始想到了其他的工具。W. Thurston 就是其中之一。他引入了几何结构的方法对三维流形进行切割,提出了几何化猜想并解决了一个重要情形。W. Thurston 获得了1982年的菲尔茨奖。庞加莱猜想是几何化猜想的一个特别情形,但W. Thurston 解决的情形不包括庞加莱猜想情形。

  千百年来,数学家们在拓展人类思维边界的道路上,不懈努力,取得了众多的杰出成果。但是还有很多悬而未解的重大问题,有待有志者去解决。比如,2000年著名的克雷数学研究所将庞加莱猜想等七个重要数学问题列为“七大千禧年难题”,即:NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯理论、纳卫尔-斯托可方程、BSD猜想。破解每个难题都可获得100万美元的奖励,这七大数学难题被认为是“对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题”。

  传奇数学家 Perelman 在花了8年多时间研究庞加莱猜想这个足有一个世纪的数学难题后,在2002年11月和2003年7月之间,将3份关键论文的手稿上传到 arXiv.org 这个专门刊登数学等学科的预印本论文的网站上,并用电邮通知了几位数学家,声称自己证明了几何化猜想。后来,Perelman 理所当然地得了菲尔兹奖,但是他没有去领奖。Perelman 的数学才华和特立独行,大家在网上都能查到一些描述,在这里就不再赘述。

  传奇数学家PerelmanPerelman 的证明中使用了 R. Hamilton 引进的Ricci流,它是一组微分方程。他通过完成一系列的拓扑手术,构造奇点可控的几何解,从而解决了几何化猜想以及三维的庞加莱猜想。这是用几何分析技巧理解拓扑问题的典范。

  Ricci Flow

  不仅数学不同分支之间有深刻的联系。数学和物理更是一直相互启发,相互推动,一同发展。爱因斯坦方程在广义相对论中,宇宙一切物质的运动都可以用几何学中的曲率来描述,引力场实际上就是一个弯曲的时空。 计数几何是代数几何的一个重要分支,研究几何方程的解的个数。它有非常悠久的历史。近三十年来,计数几何与物理的拓朴场理论研究相互影响,促进了两个学科的高度发展。它的研究更加系统化,与数学其他分支,如表示论、微分方程等紧密相连。量子同调环就是一例。1993年,受物理中场论研究的启发,我和阮勇斌首次建立它的数学理论,解决了一类经典的计数几何问题。

  数学在经济学、生物学等学科的发展中也起到非常重要的作用。很多诺贝尔经济学奖得主都是学数学出身的,大家熟悉的约翰·纳什就是数学家,也是奥斯卡电影奖《美丽心灵》的主人公原型。约翰·纳什也是普林斯顿大学教授,我之前在普林斯顿工作,在校园里时常见到他。纳什不仅获得诺贝尔经济学奖,他还获得阿贝尔奖。阿贝尔大奖是数学界的重大奖项,为了纪念挪威著名数学家阿贝尔二百周年诞辰而设立的,据说设立此奖的一个原因也是因为诺贝尔奖没有数学奖项,阿贝尔奖奖金的数额大致同诺贝尔奖相近。

  约翰·纳什

  此外,1997年诺贝尔经济学奖得主罗伯特·莫顿,他也是数学家。2005年诺贝尔经济学奖得主罗伯特·奥曼的最高学历是麻省理工的数学博士。2012年诺贝尔经济学奖颁发给哈佛大学教授罗斯和加州大学的沙普利,他们俩本科和博士都读的是数学专业。 数学在医学上也无处不在,如利用概率和统计来验证新药或程序的有效性,或估计接受某些治疗的癌症患者的存活率。现在我们在医院中常见的CT成像技术的数学基础是Radon变换。

  CT成像技术

参考标签

声明:本文转载仅出于学习和传播信息所需,并不意味着代表本站观点或证实其内容的真实性;其他网站或个人转载使用须保留本站所注“来源”,并自负相关法律责任;如作者不希望被转载或其他事宜,请及时联系我们!