手机版 客户端
《JOURNAL OF MACHINE LEARNING RESEARCH》杂志封面
  • 所属分类:首页 > SCI期刊 > 工程技术
  • 期刊名: JOURNAL OF MACHINE LEARNING RESEARCH
  • 期刊名缩写:J MACH LEARN RES
  • 期刊ISSN:1532-4435
  • E-ISSN:N/A
  • 2025年影响因子/JCR分区:5.2/Q1 查看近年IF趋势图
  • 5年平均影响因子:8.8
  • 学科分类与版本:AUTOMATION & CONTROL SYSTEMS - SCIE; COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE - SCIE
  • 出版周期:Bimonthly
  • 出版年份:2001
  • 出版国家或地区:UNITED STATES
  • 出版商:MICROTOME PUBL
  • 年文章数:查看近年文章发表趋势图
  • 论著文章占比:100.00% [论著 ÷(论著 + 综述)]
  • 是否OA开放访问:Yes
  • Gold OA文章占比:0%
  • 官方网站:jmlr.org/
  • 投稿网址:jmlr.org/author-info.html
  • 编辑部地址:MICROTOME PUBL, 31 GIBBS ST, BROOKLINE, USA, MA, 02446

《JOURNAL OF MACHINE LEARNING RESEARCH》中科院JCR分区

  • 2025年3月升级版:
  • 大类小类学科Top综述期刊
    计算机科学 4区
    AUTOMATION & CONTROL SYSTEMS
    自动化与控制系统
    4区
    COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
    计算机:人工智能
    4区

  • 2023年12月升级版:
  • 大类小类学科Top综述期刊
    计算机科学 3区
    AUTOMATION & CONTROL SYSTEMS
    自动化与控制系统
    3区
    COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
    计算机:人工智能
    3区

    《JOURNAL OF MACHINE LEARNING RESEARCH》期刊简介:

    The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online.

    JMLR has a commitment to rigorous yet rapid reviewing.
    JMLR seeks previously unpublished papers on machine learning that contain:
    new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature;
    experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems;
    accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods;
    formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks;
    development of new analytical frameworks that advance theoretical studies of practical learning methods;
    computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.

  • 浏览下载本刊EndNote stylesEndNote styles
  • 《JOURNAL OF MACHINE LEARNING RESEARCH》其他相关信息:

    《JOURNAL OF MACHINE LEARNING RESEARCH》评估说明

      《JOURNAL OF MACHINE LEARNING RESEARCH》发布于爱科学网,并永久归类相关SCI期刊导航类别中,本站只是硬性分析 "《J MACH LEARN RES》" 杂志的可信度。学术期刊真正的价值在于它是否能为科技进步及社会发展带来积极促进作用。"《J MACH LEARN RES》" 的价值还取决于各种因素的综合分析。

    此文由爱科学编辑!:首页 > SCI期刊 > 工程技术 » JOURNAL OF MACHINE LEARNING RESEARCH

    《JOURNAL OF MACHINE LEARNING RESEARCH》投稿经验分享